Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Prey depletion threatens many carnivore species across the world and can especially threaten low‐density subordinate competitors, particularly if subordinates are limited to low densities by their dominant competitors. Understanding the mechanisms that drive responses of carnivore density to prey depletion is not only crucial for conservation but also elucidates the balance between top‐down and bottom‐up limitations within the large carnivore guild. To avoid predation, competitively subordinate African wild dogs typically avoid their dominant competitors (lions) and the prey rich areas they are associated with, but no prior research has tested whether this pattern persists in ecosystems with anthropogenically‐reduced prey density, and reduced lion density as a result. We used spatial data from wild dogs and lions in the prey‐depleted Greater Kafue Ecosystem to test if wild dogs continue to avoid lions (despite their low density), and consequently avoid habitats with higher densities of their dominant prey species. We found that although lion density is 3X lower than comparable ecosystems, wild dogs continue to strongly avoid lions, and consequently avoid habitats associated with their two most important prey species. Although the density of lions in the GKE is low due to prey depletion, their competitive effects on wild dogs remain strong. These effects are likely compounded by prey‐base homogenization, as lions in the GKE now rely heavily on the same prey preferred by wild dogs. These results suggest that a reduction in lion density does not necessarily reduce competition, and helps explain why wild dogs decline in parallel with their dominant competitors in ecosystems suffering from anthropogenic prey depletion. Protecting prey populations within the few remaining strongholds for wild dogs is vitally important to avoid substantial population declines. Globally, understanding the impacts of prey depletion on carnivore guild dynamics should be an increasingly important area of focus for conservation.more » « less
-
Introduction: Predators can affect prey not only by killing them, but also by causing them to alter their behavior, including patterns of habitat selection. Prey can reduce the risk of predation by moving to habitats where predators are less likely to detect them, less likely to attack, or less likely to succeed. The interaction of such responses to risk with other ecological processes remains relatively unstudied, but in some cases, changes in habitat use to avoid predation may be constrained by competition: larger, dominant competitors should respond freely to predation risk, but the responses of smaller, subordinate competitors may be constrained by the responses of dominant competitors. For large grazing herbivores, an alternative hypothesis proposes that smaller prey species are vulnerable to more predators, and thus should respond more strongly to predation risk. Methods: Here, we tested these two hypotheses with 775 observations of habitat selection by four species of obligate grazers (zebra, wildebeest, puku and oribi) in the immediate presence or absence of four large carnivores (lion, spotted hyena, African wild dog and cheetah) in three ecosystems (Greater Liuwa, Greater Kafue and Luangwa Valley). Patterns of predation within this set were described by observation of 1,105 kills. Results:Our results support the hypothesis that responses to predation risk are strongest for larger, dominant competitors. Even though zebras were killed least often, they showed the strongest shift into cover when carnivores were present. Wildebeest, puku and oribi showed weaker habitat shifts, even though they were more frequently killed. These patterns remained consistent in models that controlled for differences in the hunting mode of the predator (stalking, coursing, or intermediate) and for differences among ecosystems. There was no evidence that smaller species were subject to predation by a broader set of predators. Instead, smaller prey were killed often by smaller predators, and larger prey were killed often by larger predators. Discussion: Broadly, our results show that responses to predation risk interact with interspecific competition. Accounting for such interactions should help to explain the considerable variation in the strength of responses to predation risk that has been observed.more » « less
An official website of the United States government
